Reaction Types

Parts of a chemical equation

REACTANTS → **PRODUCTS**

• Reactants

–what you start with–on the left side of the arrow

- Products
 - -what you end up with
 - -on the right side of the arrow

Indicating physical state

- Letter or two in parentheses after a formula
- solid = (s) ex: ice = $H_2O_{(s)}$
- liquid = (l)
- 2 (5
- gas = (g) ex: steam = $H_2O_{(g)}$
- aqueous = (aq) = dissolved in water

Synthesis Reaction

- General form:
- •A + B \rightarrow AB
- key: only one product
- •ex: $SO_3 + H_2O \rightarrow H_2SO_4$

Decomposition Reaction

- General form:
- •AB \rightarrow A + B
- key: only one reactant
- ex: $C_6H_{12}O_6 \rightarrow C + H_2O$

Single Replacement

- General Form: A + BC \rightarrow AC + B
- key: free element in reactants and products
- note which element is replaced

-metal replace metals

-nonmetals replace nonmetals

Single Replacement examples

• Mg + HCl \rightarrow MgCl₂ + H₂

•Zn + $CuCl_2 \rightarrow ZnCl_2$ + Cu

• NaCl + $F_2 \rightarrow NaF + Cl_2$

Double Replacement reactions

- General Form: $AB + CD \rightarrow AD + CB$
- note: elements listed first in one formula (metals) are listed first in their new formula
- key: not any of the others

Double Replacement examples

• $AgNO_3$ + $NaCl \rightarrow AgCl + NaNO_3$

• $BaCl_2 + Na_2SO_4 \rightarrow NaCl + BaSO_4$

• $NH_4CI + NaOH \rightarrow NaCI + NH_4OH$

Acid/Base Neutralization

• General Form:

 $-acid + base \rightarrow salt + water$

- acid: formula starts with H
- base: formula ends with OH
- salt: an ionic compound
 not an acid or base

Neutralization examples

• HNO_3 + $NaOH \rightarrow H_2O$ + $NaNO_3$

• $Ba(OH)_2 + H_2SO_4 \rightarrow H_2O + BaSO_4$

• HCl + NaOH \rightarrow NaCl + H₂O

Combustion reactions

• General form:

-hydrocarbon + $O_2 \rightarrow CO_2 + H_2O$

- Hydrocarbon = any C,H compound
- ex: $CH_4 + O_2 \rightarrow CO_2 + H_2O$
- ex: $C_8H_{18} + O_2 \rightarrow CO_2 + H_2O$

Balancing Chemical Equations

Law of Conservation of Mass

Matter is neither created nor destroyed in an ordinary chemical reaction:

You have to end with all of the atoms you start with, and...

You cannot end with atoms you did not start with

What is wrong with this picture?

- $H_2 + O_2 \rightarrow H_2O$
- Look at the oxygen
- You start with 2 atoms
- You end with one
- Where did the other one go?
- This is NOT a "balanced equation"

A "balanced" equation

Has equal numbers of atoms of each element in the reactants and in the products.

How do you balance an equation?

- You cannot change subscripts:
- Ex: H₂O is water
- H_2O_2 is hydrogen peroxide
- These are obviously not the same thing

How do you balance an equation?

- The only "tool" at your disposal in balancing equations is a "coefficient"
 ✓ Whole number
- ✓ Written to the left of a formula
- ✓ Multiplies the number of atoms of each element present in the compound

Using coefficients

- Consider: NaNO₃ (sodium nitrate)
- Formula indicates: 1-Na, 1-N, 3-O

Now consider: 4 NaNO₃

- Coefficient indicates 4 times as many of everything
- Therefore, 4-Na, 4-N, 12-O

How many atoms are indicated by the formula:

Mg₃(PO₄)₂ ≽3-Mg, 2-P, 8-O

3 Mg₃(PO₄)₂ ➤ Three times as many of everything ➤ 9-Mg, 6-P, 24-O

Some pointers in balancing

- 1. Only balance one element at a time
- 2. Use a pencil
 - easier to change coefficients as needed
- 3. Leave oxygen for last
- 4. Leave hydrogen for second to last

Some pointers in balancing

- Reduce the coefficients if they can all be divided by the same number
- *Ex:* $2 P_4 + 10 O_2 \rightarrow 4 P_2 O_5$
- Coefficients should be divided by 2 and written
- $P_4 + 5 O_2 \rightarrow 2 P_2 O_5$